Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yi-Jun Wei

Department of Chemistry, Huainan Normal College, Huainan 232001, People's Republic of China

Correspondence e-mail:
huainanweiyijun@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.071$
$w R$ factor $=0.186$
Data-to-parameter ratio $=17.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis\{1-[3-(cyclohexylamino)propyliminomethyl]-naphth-2-olato\}nickel(II)

In the title centrosymmetric mononuclear nickel(II) complex, [$\mathrm{Ni}\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\right)_{2}$], the $\mathrm{Ni}^{\text {II }}$ ion has octahedral geometry and is coordinated by two O atoms and four N atoms from two Schiff bases.

Comment

Nickel complexes are very important in biology, for example, functioning as the active site of hydrolytic enzymes such as ureases (Carlsson et al., 2004; Brown et al., 2001). As part of an investigation of the structures of such nickel compounds, the title centrosymmetric mononuclear nickel(II) complex, (I), is reported here.

(I)

The molecular structure of (I) is illustrated in Fig. 1. The $\mathrm{Ni}^{\mathrm{II}}$ ion, lying on an inversion center, is in an octahedral geometry and is six-coordinated by two O atoms and four N atoms from two Schiff bases. Selected bond distances and angles are given in Table 1. All the bond lengths are in normal ranges (Allen et al., 1987). The bond lengths involving the $\mathrm{Ni}^{\mathrm{II}}$ ion are comparable to the corresponding values observed in other nickel(II) complexes (Zhu et al., 2004; Gomes et al., 2000). The bond angles around the central metal ion show very slight deviations from ideal octahedral geometry, ranging from $89.66(10)$ to $90.34(10)^{\circ}$. The three trans bond angles are 180°, from symmetry.

Experimental

2-Hydroxy-1-naphthaldehyde ($0.1 \mathrm{mmol}, 17.5 \mathrm{mg}$) and N-cyclohexyl-1,3-diaminopropane ($0.1 \mathrm{mmol}, 15.5 \mathrm{mg}$) were dissolved in MeOH $(15 \mathrm{ml})$. The mixture was stirred for about 30 min to give an orange solution. To the solution was added an MeOH solution (15 ml) of $\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 25.4 \mathrm{mg})$, with stirring. The resulting solution was kept in air for 13 d , after which time green block-shaped crystals were formed.

Received 14 April 2005 Accepted 19 April 2005 Online 14 May 2005
\qquad

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Unlabelled atoms are related to labelled atoms by $(1-x, 1-y, 1-z)$.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=677.55$
Triclinic, $P \overline{1}$
$a=9.248(2) \AA$
$b=10.272(2) \AA$
$c=11.399(2) \AA$
$\alpha=79.155(2)^{\circ}$
$\beta=67.425(2)^{\circ}$
$\gamma=81.923(2)^{\circ}$
$V=979.2(3) \AA^{\circ}$

$$
Z=1
$$

$D_{x}=1.149 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2530 reflections
$\theta=2.5-24.1^{\circ}$
$\mu=0.53 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, green
$0.20 \times 0.20 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.901, T_{\text {max }}=0.954$
7553 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.186$
$S=1.07$
3841 reflections
217 parameters

3841 independent reflections
3329 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 14$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1292 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=1.36 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

Ni1-O1	$1.890(2)$	Ni1-N2	$2.023(2)$
Ni1-N1	$1.926(2)$		
O1-Ni1-O1 1^{i}	180	$\mathrm{~N} 1-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$90.11(11)$
O1-Ni1-N1	$90.28(10)$	$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 2$	$89.66(10)$
O1 $^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	$89.72(10)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2$	$89.89(11)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	180	$\mathrm{~N} 2{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 2$	180
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$90.34(10)$		

[^0]

Figure 2
The crystal packing of (I), viewed along the a axis. H atoms have been omitted for clarity.

Atom H2 was located in a difference Fourier map and refined isotropically, with the $\mathrm{N}-\mathrm{H}$ distance restrained to 0.90 (1) \AA and $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The structure contains solvent-accessible voids of $190 \AA^{3}$, which might accommodate a disordered MeOH molecule. An unassigned maximum residual density was observed 2.59 A from atom H12A.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The author thanks the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj326.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-83.

Brown, D. A., Errington, W., Glass, W. K., Haase, W., Kemp, T. J., Nimir, H., Ostrovsky, S. M. \& Werner, R. (2001). Inorg. Chem. 40, 5962-5971.
Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Carlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. \& Nordlander, E. (2004). Inorg. Chem. 43, 8252-8262.

Gomes, L., Sousa, C., Freire, C. \& de Castro, B. (2000). Acta Cryst. C56, 12011203.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Zhu, B., Ruang, W. \& Zhu, Z. (2004). Acta Cryst. E60, m634-m636.

[^0]: Symmetry code: (i) $-x+1,-y+1,-z+1$.

